.. note::
    :class: sphx-glr-download-link-note

    Click :ref:`here <sphx_glr_download_beginner_transfer_learning_tutorial.py>` to download the full example code
.. rst-class:: sphx-glr-example-title

.. _sphx_glr_beginner_transfer_learning_tutorial.py:


Transfer Learning for Computer Vision Tutorial
==============================================
**Author**: `Sasank Chilamkurthy <https://chsasank.github.io>`_

In this tutorial, you will learn how to train a convolutional neural network for
image classification using transfer learning. You can read more about the transfer
learning at `cs231n notes <https://cs231n.github.io/transfer-learning/>`__

Quoting these notes,

    In practice, very few people train an entire Convolutional Network
    from scratch (with random initialization), because it is relatively
    rare to have a dataset of sufficient size. Instead, it is common to
    pretrain a ConvNet on a very large dataset (e.g. ImageNet, which
    contains 1.2 million images with 1000 categories), and then use the
    ConvNet either as an initialization or a fixed feature extractor for
    the task of interest.

These two major transfer learning scenarios look as follows:

-  **Finetuning the convnet**: Instead of random initializaion, we
   initialize the network with a pretrained network, like the one that is
   trained on imagenet 1000 dataset. Rest of the training looks as
   usual.
-  **ConvNet as fixed feature extractor**: Here, we will freeze the weights
   for all of the network except that of the final fully connected
   layer. This last fully connected layer is replaced with a new one
   with random weights and only this layer is trained.



.. code-block:: default

    # License: BSD
    # Author: Sasank Chilamkurthy

    from __future__ import print_function, division

    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.optim import lr_scheduler
    import numpy as np
    import torchvision
    from torchvision import datasets, models, transforms
    import matplotlib.pyplot as plt
    import time
    import os
    import copy

    plt.ion()   # interactive mode


Load Data
---------

We will use torchvision and torch.utils.data packages for loading the
data.

The problem we're going to solve today is to train a model to classify
**ants** and **bees**. We have about 120 training images each for ants and bees.
There are 75 validation images for each class. Usually, this is a very
small dataset to generalize upon, if trained from scratch. Since we
are using transfer learning, we should be able to generalize reasonably
well.

This dataset is a very small subset of imagenet.

.. Note ::
   Download the data from
   `here <https://download.pytorch.org/tutorial/hymenoptera_data.zip>`_
   and extract it to the current directory.


.. code-block:: default


    # Data augmentation and normalization for training
    # Just normalization for validation
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    data_dir = 'data/hymenoptera_data'
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                              data_transforms[x])
                      for x in ['train', 'val']}
    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                                 shuffle=True, num_workers=4)
                  for x in ['train', 'val']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


Visualize a few images
^^^^^^^^^^^^^^^^^^^^^^
Let's visualize a few training images so as to understand the data
augmentations.


.. code-block:: default


    def imshow(inp, title=None):
        """Imshow for Tensor."""
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # pause a bit so that plots are updated


    # Get a batch of training data
    inputs, classes = next(iter(dataloaders['train']))

    # Make a grid from batch
    out = torchvision.utils.make_grid(inputs)

    imshow(out, title=[class_names[x] for x in classes])



Training the model
------------------

Now, let's write a general function to train a model. Here, we will
illustrate:

-  Scheduling the learning rate
-  Saving the best model

In the following, parameter ``scheduler`` is an LR scheduler object from
``torch.optim.lr_scheduler``.


.. code-block:: default



    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()

        best_model_wts = copy.deepcopy(model.state_dict())
        best_acc = 0.0

        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)

            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    model.train()  # Set model to training mode
                else:
                    model.eval()   # Set model to evaluate mode

                running_loss = 0.0
                running_corrects = 0

                # Iterate over data.
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)

                    # zero the parameter gradients
                    optimizer.zero_grad()

                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
                        loss = criterion(outputs, labels)

                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()

                    # statistics
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
                if phase == 'train':
                    scheduler.step()

                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]

                print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                    phase, epoch_loss, epoch_acc))

                # deep copy the model
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())

            print()

        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))

        # load best model weights
        model.load_state_dict(best_model_wts)
        return model



Visualizing the model predictions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Generic function to display predictions for a few images



.. code-block:: default


    def visualize_model(model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()

        with torch.no_grad():
            for i, (inputs, labels) in enumerate(dataloaders['val']):
                inputs = inputs.to(device)
                labels = labels.to(device)

                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)

                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images//2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                    imshow(inputs.cpu().data[j])

                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)


Finetuning the convnet
----------------------

Load a pretrained model and reset final fully connected layer.



.. code-block:: default


    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    # Here the size of each output sample is set to 2.
    # Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
    model_ft.fc = nn.Linear(num_ftrs, 2)

    model_ft = model_ft.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)


Train and evaluate
^^^^^^^^^^^^^^^^^^

It should take around 15-25 min on CPU. On GPU though, it takes less than a
minute.



.. code-block:: default


    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                           num_epochs=25)



.. code-block:: default


    visualize_model(model_ft)



ConvNet as fixed feature extractor
----------------------------------

Here, we need to freeze all the network except the final layer. We need
to set ``requires_grad == False`` to freeze the parameters so that the
gradients are not computed in ``backward()``.

You can read more about this in the documentation
`here <https://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward>`__.



.. code-block:: default


    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False

    # Parameters of newly constructed modules have requires_grad=True by default
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)

    model_conv = model_conv.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that only parameters of final layer are being optimized as
    # opposed to before.
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)



Train and evaluate
^^^^^^^^^^^^^^^^^^

On CPU this will take about half the time compared to previous scenario.
This is expected as gradients don't need to be computed for most of the
network. However, forward does need to be computed.



.. code-block:: default


    model_conv = train_model(model_conv, criterion, optimizer_conv,
                             exp_lr_scheduler, num_epochs=25)



.. code-block:: default


    visualize_model(model_conv)

    plt.ioff()
    plt.show()


Further Learning
-----------------

If you would like to learn more about the applications of transfer learning,
checkout our `Quantized Transfer Learning for Computer Vision Tutorial <https://pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html>`_.




.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.000 seconds)


.. _sphx_glr_download_beginner_transfer_learning_tutorial.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download

     :download:`Download Python source code: transfer_learning_tutorial.py <transfer_learning_tutorial.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: transfer_learning_tutorial.ipynb <transfer_learning_tutorial.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_